# Weighted Approximation by Szász-Mirakjan Operators* 

Ding-Xuan Zhou<br>Department of Mathematics, Zhejiang University; Advanced Institute of Mathematics,<br>Hangzhou, Zhejiang, 310027: and Institute of Mathematics, Academia Sinica, Beijing, 100080, People's Republic of China<br>Communicated by D. Leviatan

Received October 9, 1991; accepted in revised form December 4, 1992

In this paper we consider the weighted approximation by the Szasz-Mirakjan operators. We characterize the functions with nonoptimal approximation order by smoothness. © 1994 Academic Press, Inc.

## 1. Introduction

The Szász-Mirakjan operators in [0, $\infty$ ) are given by

$$
\begin{equation*}
S_{n}(f, x)=\sum_{k=0}^{\infty} f(k / n) p_{n, k}(x), \quad p_{n, k}(x)=e^{-n x}(n x)^{k} / k! \tag{1.1}
\end{equation*}
$$

In 1978, M. Becker [1] proved for $m \in N \cup\{0\},(1+x)^{-m} f(x) \in$ $L_{\infty}[0, \infty)$ and $0<\alpha<2$ that

$$
\begin{array}{rlrl}
(1+x)^{-m}\left|S_{n}(f, x)-f(x)\right| & \leqslant M_{f}(x / n)^{\alpha / 2} & (x \geqslant 0, n \in N) \\
\Leftrightarrow(1+x)^{-m}|f(x+2 h)-2 f(x+h)+f(x)| \leqslant M_{f}^{\prime} h^{x} & (h>0, x \geqslant 0) . \tag{1.2}
\end{array}
$$

V. Totik [7] gave a characterization theorem for these operators in 1983. He proved for $f \in C[0, \infty) \cap L_{\infty}[0, \infty)$ and $0<\alpha<2$ that

$$
\begin{gather*}
\left\|S_{n}(f)-f\right\|_{\infty}=O\left(n^{-\alpha / 2}\right) \\
\Leftrightarrow x^{\alpha / 2}|f(x+2 h)-2 f(x+h)+f(x)| \leqslant M_{f} h^{\alpha} \quad(x \geqslant 0, h>0) . \tag{1.3}
\end{gather*}
$$

This result was also proved by V. Totik [6], Z. Ditzian and V. Totik [4].

[^0]In this paper we shall consider the weighted approximation by the Szász-Mirakjan operators and give a characterization theorem. We take spaces $C_{a, b}$ via the weights $w_{a, b}$ as follows.

$$
\begin{align*}
w(x) & :=w_{a, b}(x)=x^{a}(1+x)^{-b}, \quad 1>a>0, b>0,  \tag{1.4}\\
C_{a, b} & =\left\{f \in C[0, \infty): w f \in L_{\infty}[0, \infty)\right\},  \tag{1.5}\\
\|f\|_{w} & =\|w f\|_{\infty} . \tag{1.6}
\end{align*}
$$

In their monograph in 1987 [4], Z. Ditzian and V. Totik gave some weighted approximation theorems for Kantorovich type integral version of the exponential-type operators. It is strange that they did not consider the same problems for the exponential-type operators. We shall point out that the Szász-Mirakjan operators are unbounded in $C_{a, b}$ with the norm (1.6). However, since the Szász-Mirakjan operators reproduce linear functions, we only need to discuss in the space $C_{a, b}^{0}=\left\{f \in C_{a, b}: f(0)=0\right\}$ first and then extend to $C_{a, b}$. Let us denote $[x]$ as the integer part of $x>0$.

## 2. An Unbounded Property

We show the unbounded property for the Szász-Mirakjan operators as follows.

Lemma 2.1. For $S_{n}(f, x)$ given by (1.1) and $f \in C_{a, b}$, we have

$$
\begin{equation*}
\left|w(x) \sum_{k=1}^{\infty} f(k / n) p_{n, k}(x)\right| \leqslant M_{a, b}\|f\|_{w} \tag{2.1}
\end{equation*}
$$

where $M_{a, b}$ is a constant depending only on $a$ and $b$. This implies for $f \in C_{a, b}^{0}$ that

$$
\begin{equation*}
\left\|S_{n}(f)\right\|_{w} \leqslant M_{a, b}\|f\|_{w} . \tag{2.2}
\end{equation*}
$$

Proof. Note that [1] for $m \in N$

$$
\begin{equation*}
S_{n}\left(1+t^{m}, x\right) \leqslant M_{m}\left(1+x^{m}\right) \tag{2.3}
\end{equation*}
$$

We have

$$
\begin{equation*}
S_{n}\left((1+t)^{m}, x\right) \leqslant 2^{m} S_{n}\left(1+t^{m}, x\right) \leqslant 2^{m} M_{m}(1+x)^{m} \tag{2.4}
\end{equation*}
$$

By choosing $m=[b /(1-a)]+1$ we then have

$$
\begin{aligned}
\left|w(x) \sum_{k=1}^{\infty} f(k / n) p_{n, k}(x)\right| \leqslant & w(x)\left(\sum_{k=1}^{\infty}(n / k) p_{n, k}(x)\right)^{a} \\
& \times\left(\sum_{k=1}^{\infty}(1+k / n)^{m} p_{n, k}(x)\right)^{b / m}\|f\|_{w} \\
\leqslant & 2^{a} 2^{b}\left(M_{m}\right)^{b / m}\|f\|_{w .}
\end{aligned}
$$

Our proof is then complete.
Theorem 1. For any $n \in N$, the Szász-Mirakjan operator $S_{n}(f, x)$ is unbounded in $\left(C_{a, b},\|\cdot\|_{w}\right)$.

Proof. Let $f_{m}(x)=1 /\left(x^{a}+1 / m\right)$. Then we have $\left\|f_{m}\right\|_{w} \leqslant 1$. By Lemma 2.1 we have

$$
\begin{aligned}
\left\|S_{n}\left(f_{m}\right)\right\|_{w} & \geqslant\left\|w(x) f_{m}(0) p_{n, 0}(x)\right\|_{\infty}-\left\|w(x) \sum_{k=1}^{\infty} f_{m}(k / n) p_{n, k}(x)\right\|_{\infty} \\
& \geqslant m\left\|w(x) e^{-n x}\right\|_{\infty}-M_{a, b} \\
& \rightarrow \infty \quad(m \rightarrow \infty)
\end{aligned}
$$

Hence $S_{n}(f)$ is unbounded in $\left(C_{a, b},\|\cdot\|_{w}\right)$.

## 3. Bernstein Type Inequalities

The main tool for the proof of the inverse theorem in the nonoptimal case is an appropriate Bernstein-type inequality. Denote $\varphi(x)=x$.

Lemma 3.1. Let $c, d \geqslant 0$. Then we have

$$
\begin{equation*}
\left|\sum_{k=1}^{\infty}(k / n)^{-c}(1+k / n)^{d} p_{n, k}(x)\right| \leqslant M_{c, d} x^{-c}(1+x)^{d}, \quad(x>0) \tag{3.1}
\end{equation*}
$$

where $M_{c, d}$ is a constant depending only on $c$ and $d$.
Proof. If $c, d>0$, then we have for $x>0$

$$
\begin{aligned}
& \left|\sum_{k=1}^{\infty}(k / n)^{-c}(1+k / n)^{d} p_{n, k}(x)\right| \\
& \quad \leqslant\left(\sum_{k=1}^{\infty}(k / n)^{-2 c} p_{n, k}(x)\right)^{1 / 2}\left(\sum_{k=1}^{\infty}(1+k / n)^{2 d} p_{n, k}(x)\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & \left(\sum_{k=1}^{\infty}(n / k)^{[2 c]+1} p_{n, k}(x)\right)^{c /[[2 c]+1]}\left(S_{n}\left((1+t)^{[2 d]+1}, x\right)\right)^{d /([2 d]+1)} \\
\leqslant & \left(([2 c]+2)!x^{-([2 c]+1)}\right)^{c /([2 c]+1)} \\
& \times\left(2^{[2 d]+1} M_{[2 d]+1}(1+x)^{[2 d]+1}\right)^{d /([2 d]+1)} \\
\leqslant & M_{c, d} x^{-c}(1+x)^{d} .
\end{aligned}
$$

The cases of $c=0$ or $d=0$ can be easily obtained, and our proof is then complete.

Lemma 3.2 (Bernstein-type Inequality). Let $f \in C_{a, b}^{0}, n \in N$. Then we have

$$
\begin{equation*}
\left\|\varphi S_{n}^{\prime \prime}(f)\right\|_{w} \leqslant M_{1} n\|f\|_{w}, \tag{3.2}
\end{equation*}
$$

where $M_{1}$ is a constant independent of $f$ and $n$.
Proof. Note that for $g \in C[0, \infty)$

$$
\begin{align*}
& S_{n}^{\prime \prime}(g, x)=n^{2} \sum_{k=0}^{\infty}(g((k+2) / n)-2 g((k+1) / n)+g(k / n)) p_{n, k}(x)  \tag{3.3}\\
& S_{n}^{\prime \prime}(g, x)=(n / x)^{2} \sum_{k=0}^{\infty} g(k / n)\left((k / n-x)^{2}-k n^{-2}\right) p_{n, k}(x) \tag{3.4}
\end{align*}
$$

Then for $x \in(0,1 / n]$ we have by Lemma 3.1 and (3.3)

$$
\begin{aligned}
\left|w(x) \varphi(x) S_{n}^{\prime \prime}(f, x)\right| & \leqslant w(x) x n^{2} \sum_{k=1}^{\infty} 4(k / n)^{-a}(1+k / n)^{b} p_{n, k}(x)\|f\|_{w} \\
& \leqslant 4 n w(x) M_{a, b} x^{-a}(1+x)^{b}\|f\|_{w} \\
& \leqslant M_{1} n\|f\|_{w} .
\end{aligned}
$$

For $x>1 / n$, by (3.4) we have

$$
\begin{aligned}
& \left|w(x) \varphi(x) S_{n}^{\prime \prime}(f, x)\right| \\
& \leqslant w(x) n^{2} / x \sum_{k=1}^{\infty}(w(k / n))^{-1}\left((k / n-x)^{2}+k n^{-2}\right) p_{n, k}(x)\|f\|_{w} \\
& \leqslant w(x) n^{2} / x\left(\sum_{k=1}^{\infty}(k / n)^{-2 a}(1+k / n)^{2 b} p_{n, k}(x)\right)^{1 / 2} \\
& \times\left(2 S_{n}\left((t-x)^{4}+t^{2} n^{-2}, x\right)\right)^{1 / 2}\|f\|_{w} \\
& \leqslant \sqrt{M_{2 a, 2 b}} n^{2} / x\left(2\left(x n^{-3}+3 x^{2} n^{-2}+x^{2} n^{-2}+x n^{-3}\right)\right)^{1 / 2}\|f\|_{w} \\
& \leqslant 4 \sqrt{M_{2 a, 2 b}} n\|f\|_{w} \\
& \leqslant M_{1} n\|f\|_{w},
\end{aligned}
$$

here we have used the moments of the Szász-Mirakjan operators

$$
\begin{align*}
& S_{n}\left((t-x)^{2}, x\right)=x / n  \tag{3.5}\\
& S_{n}\left((t-x)^{4}, x\right)=x n^{-3}+3 x^{2} n^{-2}
\end{align*}
$$

Thus we have proved our Bernstein-type inequality.
To prove our direct and inverse results we need the Peetre's $K$-functional defined in $C_{a, b}^{0}$ as

$$
\begin{align*}
K(f, t)_{w} & =\inf _{g \in D}\left\{\|f-g\|_{w}+t\left\|\varphi g^{\prime \prime}\right\|_{w}\right\}  \tag{3.6}\\
D & =\left\{g \in C_{a, b}^{0}: g^{\prime} \in \text { A.C. } \cdot_{\cdot \text { loc }},\left\|\varphi g^{\prime \prime}\right\|_{w}<\infty\right\} \tag{3.7}
\end{align*}
$$

Lemma 3.3. Let $f \in D, n \in N$. Then we have

$$
\begin{equation*}
\left\|\varphi S_{n}^{\prime \prime}(f)\right\|_{w} \leqslant M_{2}\left\|\varphi f^{\prime \prime}\right\|_{w}, \tag{3.8}
\end{equation*}
$$

where $M_{2}$ is a constant independent of $f$ and $n$.
Proof. Let $x>0, n \in N$. By (3.3) and Lemma 3.1 we have

$$
\begin{aligned}
\left|w(x) \varphi(x) S_{n}^{\prime \prime}(f, x)\right|= & \left|w(x) x n^{2} \sum_{k=0}^{\infty} \iint_{0}^{1 / n} f^{\prime \prime}(k / n+u+v) d u d v p_{n, k}(x)\right| \\
\leqslant & w(x) x n^{2} \sum_{k=0}^{\infty} \iint_{0}^{1 / n}(k / n+u+v)^{-1-a} \\
& \times(1+k / n+u+v)^{b} d u d v p_{n, k}(x)\left\|\varphi f^{\prime \prime}\right\|_{w} \\
\leqslant & w(x) x \sum_{k=1}^{\infty}\left\{(1+(k+2) / n)^{b}(k / n)^{-1-a} p_{n, k}(x)\right\} \\
& \times\left\|\varphi f^{\prime \prime}\right\|_{w}+w(x) x n^{2}(1+2 / n)^{b} \\
& \times \int_{0}^{1 / n} u^{-a} / a d u p_{n, 0}(x)\left\|\varphi f^{\prime \prime}\right\|_{w^{\prime}} \\
\leqslant & w(x) x \sum_{k=1}^{\infty}\left\{3^{b}(1+k / n)^{b}(k / n)^{-1-a} p_{n, k}(x)\right\}\left\|\varphi f^{\prime \prime}\right\|_{w} \\
& +w(x) x n^{2} 3^{b}(1 / n)^{1-a} /(a(1-a)) p_{n, 0}(x)\left\|\varphi f^{\prime \prime}\right\|_{x} \\
\leqslant & w(x) x 3^{b} M_{1+a, b} x^{-1-a}(1+x)^{b}\left\|\varphi f^{\prime \prime}\right\|_{w} \\
& +3^{b}(n x)^{1+a} e^{-n x} /(a(1-a))\left\|\varphi f^{\prime \prime}\right\|_{w} \\
\leqslant & M_{2}\left\|\varphi f^{\prime \prime}\right\|_{w^{\prime}}
\end{aligned}
$$

Our proof is therefore complete.

## 4. A Characterization Theorem

With all the above preparations we can now give our characterization theorem. Denote $\Lambda_{h}^{2} f(x)=f(x+2 h)-2 f(x+h)+f(x)$ for $x \geqslant 0$.

Theorem 2. Let $0<a<1, b>0, w(x)=x^{a}(1+x)^{-b}, f \in C_{a, b}$. Then for $0<\alpha<1$, the following statements are equivalent :
(1) $w(x)\left|S_{n}(f, x)-f(x)\right| \leqslant M_{f} n^{-x} \quad(n \in N, x \geqslant 0)$.
(2) $K(f, t)_{n^{\prime}} \leqslant M_{f}^{\prime} t^{\alpha} \quad(t>0)$.
(3) $\sup _{x \geqslant 0}\left|x^{a+\alpha}(1+x+2 h)^{-b} \Delta_{h}^{2} f(x)\right| \leqslant M_{f}^{\prime \prime} h^{2 \alpha} \quad(h>0)$;

$$
\begin{equation*}
\left|w(x) x^{x} d_{x}^{2} f(0)\right| \leqslant M_{f}^{\prime \prime} x^{2 \alpha} \quad(x>0) \tag{4.3}
\end{equation*}
$$

Proof. It is sufficient to prove this theorem for $f \in C_{a, b}^{0}$.
By the standard method for the inverse results $[4,5]$ we have the implication $(1) \Rightarrow(2)$ from Lemmas 2.1, 3.2, and 3.3.

Now suppose (2) holds. We want to prove (3).
Let $x>0$. Then we have

$$
\begin{aligned}
\mid x^{a}(1+ & x+2 h)^{-b} \Delta_{h}^{2} f(x) \mid \\
\leqslant & x^{a}(1+x+2 h)^{-b}(1 / w(x)+2 / w(x+h)+1 / w(x+2 h)) \\
& \times\|f-g\|_{w}+x^{a}(1+x+2 h)^{-b} \iint_{0}^{h}\left|g^{\prime \prime}(x+u+v)\right| d u d v \\
\leqslant & 4\|f-g\|_{w}+x^{a}(1+x+2 h)^{-b} \\
& \times \iint_{0}^{h}(x+u+v)^{-a-1}(1+x+u+v)^{b} d u d v\left\|\varphi g^{\prime \prime}\right\|_{w} \\
\leqslant & 4\left\{\|f-g\|_{w}+h^{2} \mid x\left\|\varphi g^{\prime \prime}\right\|_{w}\right\} .
\end{aligned}
$$

By taking infimum for $g \in D$ we obtain

$$
x^{a}(1+x+2 h)^{-b}\left|\Delta_{h}^{2} f(x)\right| \leqslant 4 K\left(f, h^{2} / x\right)_{w} \leqslant 4 M_{f}^{\prime}\left(h^{2} / x\right)^{x}
$$

Hence the first statement of (4.3) is valid. The second statement can be proved in the same way.

We now want to prove the final implication $(3) \Rightarrow(1)$.
Introducing the Steklov type means for $h>0$ by

$$
\begin{equation*}
f_{h}(x)=(2 / h)^{2} \iint_{0}^{h / 2}(2 f(x+u+v)-f(x+2 u+2 v)) d u d v \tag{4.4}
\end{equation*}
$$

one has [1]

$$
\begin{align*}
f(x)-f_{h}(x) & =(2 / h)^{2} \iint_{0}^{h / 2} \Delta_{u+v}^{2} f(x) d u d v  \tag{4.5}\\
f_{h}^{\prime \prime}(x) & =h^{-2}\left(8 A_{h / 2}^{2} f(x)-\Delta_{h}^{2} f(x)\right)
\end{align*}
$$

Suppose that (4.3) holds. For $x>0, n \in N$, let $h=(x / n)^{1 / 2}$. Note that $(t-u) u^{-a}$ is monotone for $u \in[t, x]$ or $[x, t]$. Then we have

$$
\begin{aligned}
w(x) & \left|S_{n}\left(f_{h}, x\right)-f_{h}(x)\right| \\
\leqslant & w(x) S_{n}\left(\int_{x}^{t}(t-u)\left|f_{h}^{\prime \prime}(u)\right| d u, x\right) \\
\leqslant & 9 M_{f}^{\prime \prime} w(x) h^{-2} S_{n}\left(\int_{x}^{t}(t-u) h^{2 x} u^{-a-\alpha}(1+u+2 h)^{b} d u, x\right) \\
\leqslant & 9 M_{f}^{\prime \prime} w(x) h^{2 \alpha-2} \\
& \quad \times S_{n}\left((t-x) x^{-a} \int_{x}^{t} u^{-\alpha} d u\left((1+x+2 h)^{b}+(1+t+2 h)^{b}\right), x\right) .
\end{aligned}
$$

If $x \leqslant 1 / n$, then we have $h \leqslant 1$ and

$$
(t-x) \int_{x}^{t} u^{-x} d u=(t-x)\left(t^{1-x}-x^{1-x}\right) /(1-\alpha) \leqslant|t-x|^{2-x} /(1-\alpha)
$$

## Hence

$$
\begin{aligned}
w(x)\left|S_{n}\left(f_{h}, x\right)-f_{h}(x)\right| \leqslant & 9 M_{f}^{\prime \prime}(1+x)^{-b} h^{2 \alpha-2} /(1-\alpha)\left(S_{n}\left((t-x)^{2}, x\right)\right)^{1-\alpha / 2} \\
& \times 2\left(S_{n}\left((1+x+2 h)^{2 b / \alpha}+(1+t+2 h)^{2 b / \alpha}, x\right)\right)^{\alpha / 2} \\
\leqslant & 18 M_{f}^{\prime \prime}(1+x)^{-b}(x / n)^{\alpha-1} /(1-\alpha)(x / n)^{1-\alpha / 2} \\
& \times\left((1+x+2 h)^{2 b / \alpha}+3^{2 b / \alpha} S_{n}\left((1+t)^{2 b / \alpha}, x\right)\right)^{\alpha / 2} \\
\leqslant & 18 M_{f}^{\prime \prime}(1+x)^{-b} /(1-\alpha)(x / n)^{\alpha / 2} \\
& \times 3^{b}\left((1+x)^{2 b / \alpha}+M_{a, b}(1+x)^{2 b / \alpha}\right)^{\alpha / 2} \\
\leqslant & M_{f} n^{-\alpha} .
\end{aligned}
$$

Let

$$
\begin{equation*}
S_{n}^{*}(g, y)=\sum_{k=1}^{\infty} g(k / n) p_{n, k}(y) \tag{4.6}
\end{equation*}
$$

If $x>1 / n$, then we have

$$
\begin{align*}
w(x)\left|S_{n}\left(f_{h}, x\right)-f_{h}(x)\right| \leqslant & 9 M_{f}^{\prime \prime} h^{2 \alpha-2}(1+x)^{-b} \\
& \times\left(S_{n}\left(\left((1+x+2 h)^{b}+(1+t+2 h)^{b}\right)^{2}, x\right)\right)^{1 / 2} \\
& \times\left(S_{n}\left(\left((t-x) \int_{x}^{r} u^{-\alpha} d u\right)^{2}, x\right)\right)^{1 / 2} \tag{4.7}
\end{align*}
$$

Note that $1+x+2 h \leqslant 3(1+x)$ and

$$
(1+t+2 h)^{2 b} \leqslant 2^{2 b}\left((1+t)^{2 b}+(2 h)^{2 b}\right)
$$

We have

$$
\begin{aligned}
& \left(S_{n}\left(\left((1+x+2 h)^{b}+(1+t+2 h)^{b}\right)^{2}, x\right)\right)^{1 / 2} \\
& \quad \leqslant\left(2\left((1+x+2 h)^{2 b}+2^{2 b} S_{n}\left((2 h)^{2 b}+(1+t)^{2 b}, x\right)\right)\right)^{1 / 2} \\
& \quad \leqslant M_{b}(1+x)^{b} .
\end{aligned}
$$

By the moments of the Szász-Mirakjan operators [4] we have

$$
\begin{aligned}
S_{n}\left(\left((t-x) \int_{x}^{t} u^{-\alpha} d u\right)^{2}, x\right) \leqslant & S_{n}^{*}\left(\left((t-x)^{2}\left(x^{-\alpha}+t^{-\alpha}\right)\right)^{2}, x\right) \\
& +\left(x \int_{0}^{x} u^{-\alpha} d u\right)^{2} p_{n, 0}(x) \\
\leqslant & \left(S_{n}\left((t-x)^{8}, x\right)\right)^{1 / 2} \\
& \times\left(16 S_{n}^{*}\left(\left(x^{-4 x}+t^{-4 \alpha}\right), x\right)\right)^{1 / 2} \\
& +\left(x^{2-\alpha} /(1-\alpha)\right)^{2} e^{-n x} \\
\leqslant & 4 M_{4}(x / n)^{2}\left(x^{-4 x}+M_{4 x} x^{-4 \alpha}\right)^{1 / 2} \\
& +2(1-\alpha)^{-2} x^{2-2 \alpha}(n x)^{2} e^{-n x} / 2!n^{-2} \\
\leqslant & M_{5} x^{2-2 \alpha} n^{-2}
\end{aligned}
$$

where $M_{4}$ and $M_{5}$ are constants independent of $x$ and $n$.
Thus, for $x>1 / n$, we also have

$$
\begin{aligned}
w(x)\left|S_{n}\left(f_{h}, x\right)-f_{h}(x)\right| & \leqslant 9 M_{f}^{\prime \prime} h^{2 \alpha-2}(1+x)^{-b} M_{b}(1+x)^{b} \sqrt{M_{5}} x^{1-\alpha} n^{-1} \\
& \leqslant 9 M_{f}^{\prime \prime} M_{6} \sqrt{M_{5}} n^{-\alpha} .
\end{aligned}
$$

Therefore, we have

$$
\sup _{x \geqslant 0}\left\{w(x)\left|S_{n}\left(f_{h}, x\right)-f_{h}(x)\right|\right\}=O\left(n^{-x}\right)
$$

From (4.5) we have

$$
\begin{aligned}
w(x)\left|S_{n}^{*}\left(f_{h}-f, x\right)\right| \leqslant & w(x) S_{n}^{*}\left((2 / h)^{2} \iint_{0}^{h / 2} M_{f}^{\prime \prime} t^{-a-\alpha}\right. \\
& \left.\times(1+t+2 u+2 v)^{b}(u+v)^{2 \alpha} d u d v, x\right) \\
\leqslant & w(x) M_{f}^{\prime \prime} h^{2 \alpha} S_{n}^{*}\left(t^{-a-\alpha}(1+t+2 h)^{b}, x\right) \\
\leqslant & M_{f}^{\prime \prime} w(x) h^{2 \alpha}\left(S_{n}^{*}\left(t^{-2 a-2 \alpha}, x\right)\right)^{1 / 2} \\
& \times\left(2^{2 b} S_{n}^{*}\left((2 h)^{2 b}+(1+t)^{2 b}, x\right)\right)^{1 / 2} \\
\leqslant & M_{f}^{\prime \prime} w(x) h^{2 \alpha} M_{a, \alpha} x^{-a-\alpha} 2^{b}\left((2 h)^{2 b}+M_{b}(1+x)^{2 b}\right)^{1 / 2} \\
\leqslant & M_{f}^{\prime \prime} M_{a, \alpha} 2^{b}\left(4^{b}+M_{b}\right)^{1 / 2} n^{-\alpha} .
\end{aligned}
$$

Note that $f \in C_{a, b}^{0}$. We also have

$$
\begin{aligned}
w(x)\left|S_{n}\left(f_{h}-f, x\right)\right| \leqslant & w(x)\left|S_{n}^{*}\left(f_{h}-f, x\right)\right|+w(x)(2 / h)^{2} \\
& \times \iint_{0}^{h / 2}\left|A_{u+v}^{2} f(0)\right| d u d v p_{n, 0}(x) \\
\leqslant & w(x)\left|S_{n}^{*}\left(f_{h}-f, x\right)\right|+w(x)(2 / h)^{2} M_{f}^{\prime \prime} \\
& \times \iint_{0}^{h / 2}(u+v)^{\alpha-a}(1+u+v)^{b} d u d v p_{n, 0}(x) .
\end{aligned}
$$

For the second term we have

$$
\begin{aligned}
& w(x)(2 / h)^{2} M_{f}^{\prime \prime} \iint_{0}^{h / 2}(u+v)^{\alpha-a}(1+u+v)^{b} d u d v p_{n, 0}(x) \\
& \leqslant M_{f}^{\prime \prime} w(x)(2 / h)^{2 a} h^{\alpha}(1+h)^{b}\left(\iint_{0}^{h / 2}(u+v)^{-1} d u d v\right)^{a} p_{n, 0}(x) \\
& \leqslant M_{f}^{\prime \prime} 2^{2 a} x^{a}(1+x)^{-b} h^{\alpha-2 a} 2^{b}(1+x)^{b} M_{6}^{a}(h / 2)^{2 a} h^{-a} p_{n, 0}(x) \\
& \leqslant 2^{b} M_{f}^{\prime \prime} M_{6}^{a}(n x)^{(a+\alpha) / 2} e^{-n x} n^{-\alpha} \\
& \leqslant 2^{b} M_{f}^{\prime \prime} M_{6}^{a}\left(2 n x e^{-2 n x /(a+\alpha)} /(a+\alpha)\right)^{(a+\alpha) / 2}(a+\alpha)^{(a+x) / 2} n^{-\alpha} \\
& \leqslant 2^{b} M_{f}^{\prime \prime} M_{6}^{a}(a+\alpha)^{(a+\alpha) / 2} n^{-\alpha}
\end{aligned}
$$

here we have used the following inequality in [1]

$$
\begin{equation*}
\iint_{0}^{t}(x+u+v)^{-1} d u d v \leqslant M_{6} t^{2}(x+2 t)^{-1} \quad(0<t \leqslant 1) \tag{4.8}
\end{equation*}
$$

and for $t \in\left[2^{m}, 2^{m+1}\right), m \in N$,

$$
\begin{aligned}
\iint_{0}^{t}(u+v)^{-1} d u d v & \leqslant \sum_{i, j=-\infty}^{m} \int_{2^{i}}^{2^{i+1}} \int_{2^{\prime}}^{2^{j+1}}(u+v)^{-1} d u d v \\
& \leqslant \sum_{i=-\infty}^{m} 2^{i}=2^{m+1} \leqslant 4 t^{2} /(2 t)
\end{aligned}
$$

hence (4.8) holds for $x=0$ and any $t>0$.
Finally, by (4.5) we have for $x>0$

$$
\begin{aligned}
w(x)\left|f(x)-f_{h}(x)\right| \leqslant & w(x)(2 / h)^{2} \iint_{0}^{h / 2}\left|\Delta_{u+v}^{2} f(x)\right| d u d v \\
\leqslant & w(x)(2 / h)^{2} \iint_{0}^{h / 2} M_{f}^{\prime \prime} x^{-a-\alpha} \\
& \times(1+x+2 u+2 v)^{b}(u+v)^{2 \alpha} d u d v \\
\leqslant & M_{f}^{\prime \prime}(2 / h)^{2}(1+x)^{-b}(1+x+2 h)^{b} x^{-\alpha} h^{2 \alpha}(h / 2)^{2} \\
\leqslant & 3^{b} M_{f}^{\prime \prime} n^{-\alpha} .
\end{aligned}
$$

Combining all the above discussions we obtain

$$
w(x)\left|S_{n}(f, x)-f(x)\right| \leqslant M_{f} n^{-\alpha}
$$

where $M_{f}$ is a constant independent of $n$ and $x$.
The proof of our main result is complete.

## References

1. M. Becker, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J. 27 (1978), 127-142.
2. H. Berens and G. G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), 693-708.
3. Z. Ditzian and K. G. Ivanov, Bernstein-type operators and their derivatives, J. Approx. Theory 56 (1989), 72-90.
4. Z. Ditzian and V. Totik, Moduli of smoothness, in "Springer Series in Computational Mathematics," Vol. 9, Springer-Verlag, Berlin/Heidelberg/New York, 1987.
5. A. Grundmann, Inverse theorems for Kantorovich polynomials, in "Fourier Analysis and Approximation Theory," pp. 395-401, North-Holland, Amsterdam, 1978.
6. V. Totik, An interpolation theorem and its applications to positive operators, Pacific J. Math. 111 (1984), 447-481.
7. V. Totik, Uniform approximation by Szász-Mirakjan type operators, Acta Math. Hungar. 41 (1983), 291-307.
8. Ding-Xuan Zhou, On a conjecture of Z. Ditzian, J. Approx. Theory 69 (1992), 167-172.

[^0]:    * Supported by National Science Foundation and Zhejiang Provincial Science Foundation of China and the Alexander-von-Humboldt Foundation of Germany.

